
flrm ed Services Technical Information agency
Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED
YOUR PURPOSE so that it may be made available to other requesters. Your cooperation
will be appreciated.

,I I

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED
GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS
NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE
GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE
SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY
IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE,
USE OR SELL ANY PATENTED INVENTION THAT'MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER

KNOTT BUILDING, DAYTON, 2, OHIO

i wr A&cii



I-7

APPLICATION'OF GREEN'S METHOD IN DERIVING

APPRIOXIMATE THEORIES"OF ELASTICITY

by'

Ofice of Naval Resarch .projedt NR-064-388:

Contract Nonr-266(09)

Technical Report No. 13

CU-14-54-ONR-266.(09)-CE

]February 19,54



DEPARTMENT OF CIVIL ENGINEERING

APPLICATION OF GREEN'S METHOD IN DERIVING

APPROXIMATE THEORIES OF ELASTICITY

by

G. HERRMANN

Office of Naval Research Project NR-064-388

Contract Nonr-266(09)

Technical Report No. 13

CU-14-54-ONR-266 (09) -CE

February 1954



r1

ABSTRACT

G. Green's procedure of deriving the three-dimensional linear

equations of the theory of elasticity, is used as a guide in deducing

an approximate theory of longitudinal motions of an elastic rod which

contains the effects of radial inertia and radial shear deformation.

At various stages of the development, attention is drawn to the analogies

between the three-dimensional and the approximate theory. It is noted

in particular, that the principle of conservation of energy imposes

restrictions on possible stress-strain relations. These restrictions,

which were overlooked in a previous paper by Mindlin and Herrmann, are

taken into account here, thus altering the displacement equations of

motion, but leaving the wave velocities in an infinite rod unchanged.



APPLICATION OF GREENS METHOD

IN DERIVING APOXI14ATE THEORIES OF EIASTICIT

Introduction

Various procedures have been adopted in establishing approximate

linear theories of equilibrium and motion of elastic bodies, one or two of

whose dimensions are small in comparison with the others.

One possibility consists in applying Newton's second law with respect

to an element of the body, restricting possible deformations or stress dis-

tributions. It was followed, for example, by Bernoulli and Euler1 in

deriving what is termed today the elementary beam theory.

Another possibility consists in operating in appropriate fashions upon

the general three-dimensional equations, as was demonstrated by Boussinesq [2]

in deriving classical plate equations.

More recently, plate theories containing the influence of rotatory

inertia and shear deformation were derived by various means by E. Reissner [3]9

[4], A. E. Green[5], R. .D. Mindlin [6] and a similar shell theory by F. B.

Hildebrandt E. Reissner and G. B. Thomas [7].

In deriving approximate equations of coupled longitudinal and radial

motions in an elastic rod, Mindlin and Herrmann [8] have employed the three-

dimensional energy expressions and stress-strain relations.

The purpose of the present paper is to demonstrate, with the example

of a rod theory, how G. Green's method of deriving the general three-

dimensional theory, may be used in deriving approximate theories of motion.

1 See Historical Introduction in reference [1]. Numbers in brackets refer

to the Bibliography at the end of the paper.
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Shortly after the three-dimensional theory had been establishedv

G. Green [9] proposed a new method of deriving these equations from the

principle of conservation of energy. Later, Lord Kelvin [1O] elaborated on

the justification of Greents procedure within the framework of the laws of

thermodynamics; but ever since its inception, Green's approach has remained

a controversial issue,, De Saint-Venant [11] termed it only a chain of

arbitrary assumptions. In recent timesq despite its elegance, it has been

criticized severely by Truesdell [12], chiefly because of its inability to

encompass as many phenomena as an approach starting from the Newtonian laws.

Even though Green s formalism does not provide full physical insight, it

has merits in its expediency and economy in arriving at a formally complete

and consistent theory, within the framework of starting assumptions. The

term "consistency" of an approximate theory is used here with particular ref-

erence to the principle of conservation of energy. In the absence of heat)

the "stresses" of any approximate theory must be derivable from a potentialq

which imposes restrictions on possible stress-strain relations. This type

of restriction leads to the requirement that the differential operator matrix

of the displacement equations of equilibrium or of motion must be symmetric,

as was pointed out by Vlasov [13]. For example, Vlasov has shown that Love's

shell theory2 does not satisfy the requirement.

This restriction was also overlooked in the recent paper by Mindlin

and Herrmann [8], where certain constants were introduced into the stress-

displacement relations in a manner which made the differential operator matrix

of the displacement equations of motion asymmetric,

In the present paper it is shown how these constants may be introduced

into the stress-displacement relations so as to keep the matrix symmetric.

2 See chapter 24 of reference [1].
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Even though the displacement equations of motion differ from those of [8],

the velocity equation is the same, that is, the wave velocities have the

same values as all those presented in 1[8].

In the first section of the present paper, G-. Green's method is used

in deriving the equations of three-dimensional linear elasticity in a

manner employed by Professor R. D. Mndlin in the seminar in theory of

elasticity at Columbia University.

In the second section-,an approximate theory of compressional motions

in an elastic solid rod is derived' using Green ts method as a guide. The

starting assumptions are the same as those in [8] and at various stages of

the development attention is drawn to analogies with the general three-

dimensional theory.

-3-



Clasoical Linear Theory of Elasticity

We consider a volume V of a body of mass density ' , bounded by a

surface S. We shall assume that the total energy in V is composed of the

sum of the kinetic energy T and the internal energy , which are, in the

linear theory

=Vf (2)

where OW is the element of volume, T the kinetic energy per unit of volume

and the internal energy per unit of volume.

Let the body be acted upon by body forces per unit of mass F and

surface tractions per unit of area , n being the outward drawn normal

to the tangent plane and let U be the displacement produced.

Neglecting thermal effects, the law of conservation of energy is then3

7 -+ F6 =f c Atr- +fT- d, (3)

That is? the rate of increase of the total energy in the body is equal to the

rate at which external forces do work on the body.

Let 8 designate the strain dyadic, which is the symmetric part of the

deformation dyadic W7 1 , that is,

Following Green, W is assumed to be a single-valued function of

The time rate of change of W will thus be

(6)

3 The notation employed in this section is that of reference [14]o
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The kinetic energy density T is given in the linear theory by

(7)

and its time rate of change by

Substituting (6) and (8) into (3) we have

Since is symmetric

W.-- (10)

because- is the symmetric part of 714

With the aid of the expansion

. 0~. += 1 @ .- )

where is a dyadic and 0- a vector, and the transformation

fr7 (12)

1 being the outward drawn normal unit vector, (9) becomes

v~ ~~ Y6C I (,) --WE-.

which must hold for any volume V and for all velocities I , hence,

and

IVTOh (15)
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Relation (15) defines the dyadic w  which is called the stress

and is designated by the symbol U . It is that dyadic whose scalar product

with rl I gives the traction T across the plane whose outward drawn normal
V~I1

is V1 . Equation (14) is, then, the stress equation of motion.

In order to insure uniqueness of solutions of the stress equations of

motion, it is necessary to establish an explicit stress-strain relation,

whose existence is already implicit in (3) and (5). To this end, we assume

to be analytical and expand -W into a power series of 6 . Because of the

assumed existence of a natural, unstrained state, the linear term in the

series vanishes. Further, the third and higher powers of the expansion are

neglected on account of the smallness of W . e have thus a quadratic ex-

pression for the strain energy

T (16)
A.,

where C is the elasticity tetradic. Equation (16) results in a linear stress-

strain relation

S(17)

Because of the symmetry of U' and ~ the number of independent constants C
%*

which constitute the tetradic C is 36. Since is a single-valued func-

tion, this number is reduced further to 21.

Having thus the definition of stress (15), the stress equations of

motion (14) and the stress-strain relations (17), appropriate boundary and

initial conditions of the theory should be established, i.e., conditions to

be specified on the boundary of the region and at the initial instant, which

assure a unique solution.

By an argument due to Neumann4 , it may be shown that, in the absence

4 See p, 176 in reference [1].
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of singularities and displacement discontinuities, uniqueness may be assured

by specifying (1) one member of each of the three products in TY, - at each

point of the surface and (2) the initial displacement and velocity throughout

the volume.
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A One-Dimensional Theory of Compressignl Motions in an Elastic Rod

To illustrate the application of Green's method to an approximate

linear theory, a one-dimensional theory governing the compressional motions

in an elastic rod will be derived.

Wishing to include in this theory more than is contained in the clas-

sical elementary theory, we shall start out from the same assumptions as in

paper [8], taking into account the effects of radial inertia and radial shear

deformation,

We consider a rod of circular cross-section, = 0, 1 and approximate

axially symmetric components of displacement U,, IUs U , I referred to cylin-

drical coordinates r-, ea 7 , by the forms

-- iL ( 7)

The r -dependence in these approximations has been specified completely so

that integration with respect to r may be performed, thus eliminating

from the resulting equations and reducing the number of space coordinates on

which the displacements depend.

From the mathematical point of view we are led to the above approxima-

tions by expanding the components of displacement into power series of r

retaining only the first term of each expansion. From the physical point of

view the above approximations are Justified for the study of compressional

motions, because they accommodate the limiting form of the wave motion for

long waves in the general three-dimensional theory.

The kinetic energy T of a volume V is, in cylindrical coordinates,

given by

(A ~+ 6 + (19)
-8a



r
and its time rate of change

T=,+ (20)
V

An approximation T to the kinetic energy T is obtained by substituting the

approximations to the velocities from (18). We obtain

2jTj(, (21)

and carrying out the integration
C

T T =1-4U-/ + 0 Ir Or2 -(22)

where C- 9g is the length of the rod.

The corresponding approximation E to the strain , calculated on

the basis of the approximations to the displacements (18), possesses, in

cylindrical coordinates, three different components, namely , Yi/2C ,0 Oy

the prime indicating partial differentiation with respect to Z.

The approximation W to the internal energy W, will thus be$

following Green,

-J Q( /Q) U,/2C2 ) (23)

and the time rate of change of the total internal energy

4•r )9j (4

or

/0 Q (25)

where

-9-



V

CLy

0

Q (26)

f00

In analogy to the three-dimensional theory, the integrals of the set (26)

shall be termed "rod-stresses" of the present theory.

Having the expressions (22), (25) for the time rate of change of the

kinetic energy - and the internal energy 1 1 respectively, we proceed to

formulate the principle of conservation of energy for a rod of finite length

C- . expressing that the time rate of change of internal energy must equal

the rate at which tractions do work in the displacement of the surface points,

assuming the absence of body forces,

Due to the a-ssumption of axially symmetric deformation, the tangential

traction T I at the end sections of the rod. will have radial ComponentsS

only, independent of G . The tangential traction 2 on the cylindrical sur-

face of the rod will have components in the. axial direction only and also

independent of e . The normal component of traction T on the end section

of the rod and the normal component of traction, R , on the cylindrical sur-

face of the rod will be also independent of o

The rate at which these tractions do work in the assumed displacements

(18) is given by the expression

2W'ct.~ ~ )Q -4-d 2JTh~~ TrJcr (27)

and the principle of conservation of energy takes the form

-10-
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(CL? /4 ct t ,+ C -L

CLC

Upon integration by parts of the last two terms in the second integral and

upon rearrangement, we obtain

f+ F/Q~ Q R] + [&r 3/2-k'-cP Z cL~
o T 'L -1 O1 ' Q T - r

-- 1d" + K (29)
Cc a

This relation corresponds to Equation (13) of the three-dimensional theory.

By an analogous argument, we obtain

Q~-O+L 0"L "./4
SI(30)

The first two equations (30) are the stress equations of' motion, which

are the same as those of' paper [8S], provided P is set equal to P + P

def'ined in [8B. The last two equations define the two bar-stresses Q andP

of the theory and correspond to Equation (15) of' the three-dimensional theory.

It should be noted that the method used here does not allow for an

identification of' the quantity P in terms of' components of' traction.

Comparing (31) with (26) we obtain

(32)

but there is no possibility of relating to a component of traction.

defied n []. he lst wo quaion i netetobrstessQad-
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Noteworthy is also that the surface tractions R and ? enter the dif-

ferential equation of motion in a manner analogous to the appearance of body

force in the three-dimensional equations.

The boundary and initial conditions, found by an argument of uniqueness,

analogous to the one of three-dimensional theory, are, for the present theory,

that it is sufficient to specify

(1) at each point along the length of the bar, one factor of each of the

products LA R and i-i R

(2) at each end of the bar, one member of each of the products AQand rFQ

(3) throughout the length of the bar, the initial displacements and

velocities.o

We proceed to establish the stress-displacement relationsg by expanding

'W , just as was expanded in the three-dimensional theory. Retaining

only the quadratic terms of the expansion, we have

-* ~ lot,)) (33)

e-! -- A ~L4' + ± 5 l - 1-F >e4 ~

which yields the stress-displacement relations, in accordance with (26),

carrying out the integration over the radius r

L4 !- t (34)

P-1 Tk Kr oe. 2L4 + (ea

This completes the formal development of the theory by the method of

Green. The 6 constants oe play the role of the 21 elastic constants czke

of the three-dimensional theory. It would not be difficult but it is cumber-

some to express OGe in terms of It would be necessary to write down,

in cylindrical coordinates, the expression for W in terms of the components

of strain, substitute the approximations (18), obtaining thus W and compare

-12-
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with given by (33).

If we consider an isotropic rod, characterized elastically by means of

Lame/'s constants X and , the following values of 0 are readily obtained

in carrying out the procedure outlined above:

2

4=0

C e.= 2>

In paper [8] it has been demonstrated that the present theory predicts

wave velocities of first mode which are always higher than those obtained from

the general three-dimensional theory.

One possibility of improving the present theory without rendering it,

more complicated consists in altering the values of ae , without changing

the form of the displacements. Formally, the constants oej will be determined

not in terms of the elastic constants, X and,/w , of the isotropic rod, i.e.,

matching the strain energy, as was done above, but by matching a number of

solutions of basic dynamic problems of the rod, obtained within the present

theory and within the three-dimensional theory. This procedure means physically

the attempt to diminish the error inherent in the approximate forms of the

displacements by making the rod appropriately anisotropic.

Determining o4 in this fashion, we note first that the strain energy

expression (33) must be invariant to a reversal of the sense of the z -axis;

thus

(36)



Just as in the isotropic bar.

Considering the problem of pure radial vibration of an infinite isotropic

rod; it may be readily verified that the frequency, from the three-dimensional

theory, is given by

i S'

where is the lowest root of

~ o_3i ? (38)

Jo" I being Bessel functions of order zero and one respectively.

In the present theory, the frequency of pure radial vibration is ob-

tained, from OA

4 (39)

as

~2. (40)

The two frequencies are equal if

Wishing to determine the velocity of compressional waves, travelling

in the infinite rod, we seek solutions in the form

-= Ae(42)
K)- Be i(

with

where = 27/L I and C the wave-velocity.

The equations of motion reduce then to two homogeneous, linear, alge-

braic equations in A and 8 , whose determinant, set equal to serot furnishes

the frequency or velocity equation

-14-
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4 aec -c2.][ 2ae3 / c-]- 2/c,,'* t =0

For long waves ( 0, -- 0), Equation (43) yields

C C = -2) (44)

while the corresponding exact solutions are

c'= E4 c2 .=o (45)

Matching the lower velocity we obtain

E 23 - z12o (46)

We note that Equation (46) is satisfied by the values of ne in

the isotropic rod given by (35). But since oZ has now been altered in

accordance with (41), o0. has to be changed also, to retain the validity

of (46). Expressing the altered value of oe l I ,U*4) as a multiple of

its original value (1 ,A) , the original value of o4s has to be changed

to oe'= 2 x-i , and the original value of oe3 has to be retained.

is determined, in Virtue of (41),by

2,X -2 ,4* (47)
R (( +A)

For short waves ( - ) Equation (43) yields

c2  oet/y C) 2o / (48)

while the corresponding exact solutions are

1AA (49)

the first being the Rayleigh wave velocity where X is the root of 5

5 See p. 308 in reference [1].
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;+ I ''),z) (2-x.2 ) o X x- (50)
(50

and

O-2~-)(51)

Since c3 is already determined, we can match only the lower

velocity, obtaining for a2

S" ".(52)

The stress-strain relations of the present theory become thus, in terms of

X,/CL

2 R 2 , .X ( + (X +2)A -
(53)

4 Q = 0-2- LA 1

It may be noted that ) has been determined in a different manner in

paper [8].

Comparison of the stress-displacement relations (53) with those of

paper [8] indicates that the first and the second relations are different,

while the third is identical.

From the stress equations of motion (30), with the stress-displacement

relations (53), we obtain the displacement equations of motion

_X-oh-A "A -/4 2 X-( )U-A X: , -,c- oR = Q, /4

, + (A 2,1) , '/2- ' -/2

It is observed, that the differential operator matrix of U and hr-

is symmetric. The operator on W-in the first equation is the same as the

operator on L4 in the second equation, except for an immaterial opposite

-16-



sign. This is not the case in the displacement equations of motion in,

paper [8]. However, the equation of wave velocities in an infinite rod,

deduced from (54), is the same as the one of paper [8]. Thus, all the

calculations of wave velocities plotted in [8], retain their validity

within the present, modified theory.
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